科技动态 Case
联系我们
  • 客服服务电话:021-64321087
  • 商业服务电话:13918059423
  • 技术服务电话:13918059423
  • 联系人:崔老师 
  • 服务邮箱:shxtb@163.com
  • 地址:上海市徐汇区桂林路100号8号楼107室
说明: 天津大学生命科学学院常津教授团队将纳米技术与光遗传学技术结合,设计了一种新型的纳米抗肿瘤光遗传操控系统——研究人员向生物体表面照射脉冲式近红外光,光线穿透深层组织,被稀土纳米颗粒接收转换为可见蓝光,进而激活光感蛋白,最终精准触发肿瘤细胞凋亡。这一系统的成功研发,有望提供一种恶性肿瘤“微创治疗”新方式。介绍该成果的论文《近红外光激活的上转换光遗传学纳米系统用于肿瘤治疗》已发表在纳米领域知名期刊《ACS Nano》上。   光遗传学技术是通过光学控制激活或抑制受体细胞表达光敏感蛋白,从而实现对细胞活性乃至生理功能的精准调控,为本世纪最引人关注的生物技术之一。然而,长期以来,光遗传学技术无法实现临床转化,主要因为应用时需要在活体中植入可见光光源,才能发挥作用。而植入光纤、LED灯等可见光源对生物体损伤较大,且有线设备的佩戴限制了生物体的活动。  常津教授团队设计的这种纳米抗肿瘤光遗传操控系统,可以巧妙地利用稀土“建造”的纳米颗粒作为细胞中的“能量中转站”,将肉眼不可见、但能有效穿透人体组织的近红外光转换为可见的局部蓝光,代替可见光源发挥功能,为光遗传技术应用起到了推动作用。  实验中,研究者向小鼠肿瘤部位注射了搭载光敏凋亡基因(Fas-Cib1+Cry2-FADD),掺杂造影剂钆(Gd)且负载荧光染料吲哚菁绿(ICG)的上转换纳米颗粒,并对小鼠进行了脉冲式近红外光照射。结果显示,照射4周后,小鼠肿瘤体积及重量显著减小(200mm3,0.25g),并展示出更长的存活期(8周)。“稀土纳米颗粒结合光遗传学技术用于肿瘤靶向可视化治疗,具备微创性、深层组织穿透性及强操控性等特点。未来有望通过在颗粒中掺杂不同稀土元素及改造光感功能蛋白,实现对多重细胞通路的操控。”常津教授说。  来源:天津大学
说明: 中国科学院院士、中国科学技术大学教授郭光灿团队在量子存储领域取得新进展,该团队李传锋、周宗权等人成功研制出多自由度并行复用的固态量子存储器,在国际上首次实现跨越三个自由度的复用量子存储,并展示了时间和频率自由度的任意光子脉冲操作功能。该成果于8月24日发表在国际期刊《自然-通讯》上。  由于不可克服的光纤信道损耗,目前地面安全量子通信距离被限制在百公里量级。基于量子存储器的量子中继方案可以有效克服信道损耗从而拓展量子通信的工作距离,所以量子存储器是未来长程量子通信和量子网络的核心器件。量子网络实用化的关键指标是通信速率,而多模式复用量子存储器可以极大地提升量子网络的通信速率。对于经典的存储器,如硬盘或者优盘等,其一个存储单元一次只能存储一个比特。而对量子存储器,由于具有量子相干性,其一个存储单元可以一次性存储大量的量子比特,这就是复用的概念。原则上对量子存储器的各个自由度都可以进行复用。  近年来,李传锋研究组一直致力于基于稀土掺杂晶体的复用量子存储的实验研究。2015年首次利用光子的空间自由度实现复用量子存储,存储维度数达到51维,至今保持固态量子存储维度数最高水平[Physical Review Letters 115, 070502 (2015)],复用时,可以把每一维作为一个模式,那么空间自由度就有51个模式。同年,利用光子的时间自由度,实现了100个模式的确定性单光子量子存储,至今保持复用固态量子存储的模式数最高水平[Nature Communications 6, 8652 (2015)]。  为了进一步提升量子存储器的复用能力,研究组创新性地采用多自由度并行复用的存储方案。比如在第一个自由度有M个存储模式,第二个自由度有N个模式,第三个自由度有P个模式,则量子存储器的总复用模式数为各个自由度模式数的乘积,即M*N*P。研究组选择光子的时间、空间和频率自由度进行...
说明: 来源:材料科学与工程  作为机械设备中不可或缺的核心零部件,轴承支撑机械旋转体,降低其摩擦系数,并保证其回转精度。无论飞机、汽车、高铁,还是高精密机床、仪器仪表,凡是旋转的部分,都需要轴承。  毫不夸张地说,发动机中的轴承一直在“炼狱”中工作——它不仅要以每分钟上万转的速度长时间高速运转,还要承受着各种形式的应力挤压、摩擦与超高温。这对轴承的精度、性能、寿命和可靠性提出了高要求,而决定这四点的关键因素,在于其材质。  遗憾的是,虽然我国的制轴工艺已经接近世界顶尖水平,但材质——也就是高端轴承用钢几乎全部依赖进口。  我国高端轴承材质卡在哪个环节  据科技日报报道:作为“中国企业100强”,华东某大型国有钢铁集团拥有自己的精品钢基地,但却做不出轴承用高端钢,只能依赖进口,前不久,花了近1亿元进口轴承用钢。  一般而言,在钢铁行业,8个PPM的钢属于好钢;5个PPM的钢属于顶级钢,正是高端轴承所需要的。高端轴承用钢的研发、制造与销售基本上被世界轴承巨头美国铁姆肯、瑞典SKF所垄断。前几年,他们分别在山东烟台、济南建立基地,采购中国的低端材质,运用他们的核心技术做成高端轴承,以十倍的价格卖给中国市场。炼钢过程中加入稀土,就能使原本优质的钢变得更加“坚强”。但怎么加,这是世界轴承巨头们的核心秘密。  稀土被称为“工业维生素”,稀土钢是指含有一定量稀土的钢。上世纪80年代,我国曾掀起稀土钢的研发和应用高潮,科学家们普遍认为,炼钢过程中加入稀土是解决高端轴承用钢的技术方向,但是在钢中加入稀土后,钢的性能变得时好时坏,在大规模生产过程中也极易堵塞浇口,虽经多年攻关仍未能突破技术瓶颈,这也导致稀土在钢铁行业应用中由热变冷。  如同一盆水中滴入一滴墨水,1吨钢加入多少微量稀土比较合适?怎么加?  西王特钢传来捷报  随着西王特钢与中科院金属所合力打造的首批高端稀土轴承钢顺利下线,这一问题将迎...
说明: 来源:大连理工大学  光应答分子材料可以在不同波长的光照射下在两个或多个状态之间可逆切换,导致材料颜色、形状、磁性、导电性等物理化学性质变化,从而在分子开关、传感及高密度存储器件等领域具有广阔的应用前景,近年来受到能源、催化、多功能材料等领域研究者们的广泛关注。然而,目前光响应材料特别是有机分子材料往往涉及分子结构层次上的化学键改变或基团转动,受限于空间位阻,通常只能在溶液中进行高效的转换,如何在固态实现各种功能的快速可逆控制是发展固态光响应分子器件中面临的重要挑战。光致金属离子的电子迁移或者重排可以在电子结构层次调控材料性能,并在固态进行高效可逆的转变,为实现固态分子开关材料多功能调控提供了途径。  精细化工国家重点实验室刘涛教授课题组深入思考光诱导电子迁移重排与材料多功能耦合之间的关系,提出利用电子迁移与重排引起的自旋、电荷、键长以及吸收光谱的变化控制磁性(Jiang Wen-Jing and Liu Tao, et al. Chem. Sci. 2018, 9, 617;Jiao Cheng-Qi and Liu Tao, et al. National Science Review 2018, DOI: 10.1093/nsr/nwy033)、电性(Hu Ji-Xiang and Liu Tao, et al. Angew. Chem. Int. Ed. 2017, 56, 7663)、热膨胀(Hu Ji-Xiang and Liu Tao, et al. Angew. Chem. Int. Ed. 2017, 56, 13052)和光学性质(Wang Jun-Li and Liu Tao, et al. Chem. Sci. 2018, 9, 2892)等。目前已成功利用激光实现了对磁偶极矢量、电偶极矢量、膨胀行为、和荧光发射行为的可逆操纵,为进一步实现光调控分子...
说明: 来源:中国科学报   现代通信系统通常利用光导纤维在设备内部或者设备之间传递信号。这些设备中的集成光路将多种功能结合进单个电路中。不过,信号传递需要长的光导纤维,从而使设备很难小型化。为解决这一问题,科学家开始测试平面型波导,而非长的光导纤维。  在美国物理学会(AIP)出版集团所属《应用物理学杂志》上,英国利兹大学科研人员报告了针对一种玻璃的激光辅助研究。该研究展示了其作为一种宽带平面波导放大器材料的前景。这种材料通过将一类由锌、钠、碲制成的玻璃和稀土元素铒掺杂在一起获得。掺杂了铒的波导放大器本身已经受到关注,因为铒的电子跃迁发生在通信技术的标准波长1.5微米上。  平面型波导引导光线沿着单一几何平面传播。研究人员采用了一种被称为超快激光等离子体掺杂的技术。该技术利用超快激光器将铒离子作为薄膜融入二氧化硅衬底。研究人员将高强度激光器瞄准掺杂了铒的玻璃表面。这会炸出一个微小的坑,并且产生由喷射材料羽流形成的薄膜。  薄膜形成过程产生的测量结果聚焦这种玻璃的消融阈值。这个量描述了利用强激光辐照将原子或分子分离所需的最小能量。研究人员确定了这个系统的消融阈值如何受到激光束半径、激光脉冲数量以及铒离子掺杂剂浓度的影响。  他们发现,消融阈值并不取决于制造设备所需的铒离子的低掺杂浓度。论文作者Thomas Mann表示,尽管该研究完全关注的是将铒离子作为掺杂剂,但“相关结果可适用于经过超快激光器处理的其他介质材料”。  研究人员还分析了在玻璃中爆炸形成的小坑形状和特征。理解制造过程中产生的小坑的形态学,对于控制诸如有孔性、表面积以及材料散射或者吸收光线的能力等属性非常重要。
Copyright ©Copyright 2018  2020 上海市稀土协会 All Rights Reserved 沪ICP备05017621号
主办单位:上海市稀土协会 指导单位:上海市稀土材料开发应用办公室 承办单位:上海稀土产业促进中心 
犀牛云提供企业云服务