科技动态 Case
联系我们
  • 客服服务电话:021-64321087
  • 商业服务电话:13918059423
  • 技术服务电话:13918059423
  • 联系人:崔老师 
  • 服务邮箱:shxtb@163.com
  • 地址:上海市徐汇区桂林路100号8号楼107室
说明: 来源:cnBeta.COM基于半导体纳米线的新概念有望使微电子电路中的晶体管更好、更高效。电子迁移率在其中起着关键作用。电子在这些细线中加速越快,晶体管的开关速度就越快,所需的能量就越少。来自亥姆霍兹-德累斯顿-罗森道夫中心(HZDR)、德累斯顿工业大学和NaMLab的一个研究小组现在已经成功地通过实验证明,当外壳将线芯置于拉伸应变之下时,纳米线中的电子迁移率明显增强。这一现象为开发超高速晶体管提供了新的机会。纳米线有一个独特的特性。这些超薄的线可以承受非常高的弹性应变而不损坏材料的晶体结构。而这些材料本身却并不罕见。例如,砷化镓被广泛用于工业制造,并且已知其具有较高的内在电子迁移率。为了进一步提高这种流动性,德累斯顿的研究人员生产了由砷化镓芯和砷化铟铝壳组成的纳米线。不同的化学成分导致壳和芯的晶体结构具有轻微不同的晶格间距。这导致壳对更薄的芯施加了很高的机械应力。核心中的砷化镓改变了其电子特性。这就影响了核心中电子的有效质量。电子变得更轻,可以说,这使它们更具流动性。最初的理论预测现在已经被最近发表的研究报告中的研究人员通过实验证明。我们知道,核心的电子在拉伸紧张的晶体结构中应该有更大的流动性。但我们不知道的是,线壳会在多大程度上影响核心中的电子移动性。核心非常薄,允许电子与外壳相互作用并被其散射。一系列的测量和测试证明了这种效果。尽管与外壳有相互作用,但在室温下,被调查的线芯中的电子比无应变的可比纳米线或散装砷化镓中的电子快约30%。研究人员通过应用非接触式光学光谱学来测量电子迁移率。使用一个光学激光脉冲,他们让电子在材料内部自由活动。科学家们选择了光脉冲的能量,使外壳看起来对光几乎透明,而自由电子只在线芯中产生。随后的高频太赫兹脉冲使自由电子发生振荡。将结果与模型相比较,可以发现电子是如何移动的。它们的速度越高,遇到的障碍越少,振荡持续的时间就越长。
说明: 来源:快科技据中科院消息,近期,中科院合肥物质科学研究院等离子体物理研究所在集成永磁体和简单线圈的先进仿星器设计研究取得进展。核聚变研究目前主要有两个途径,最受看好的是很多人应该经常听说的托克马克。就在12月30日晚,中科院合肥物质科学研究院等离子体物理研究所俗称“人造太阳”的全超导托卡马克核聚变实验装置(EAST)实现1056秒的长脉冲高参数等离子体运行,而且温度高达7000万度,创造了世界新纪录。相比托卡马克相比,仿星器具有稳态运行的优势,避免了托卡马克的主要缺点,也就是等离子体大破裂。但是长期以来,仿星器并没有作为聚变堆技术路线的首选,主要原因有两个:一是传统仿星器磁场的波纹度比托卡马克大,导致其新经典输运水平和高能粒子损失水平高于托卡马克。二是仿星器需要三维结构的线圈,结构复杂、制造难度大、成本高。科研人员发现,可以引入永磁体来简化仿星器的线圈,从而采用和托卡马克一样的平面线圈,降低建造的难度和成本。结合永磁体的仿星器是国际仿星器研究领域的热点,而如何用工程简单的永磁体块产生所需的三维磁场,则是研究难点。近期,徐国盛课题组首次提出一种标准化永磁体设计策略,采用“分治策略”的思路,将永磁体块的设计过程分解为逐个设计每一块永磁体,然后进行多次迭代以获得最优设计,迭代过程包括局部优化和全局优化两个部分。基于该设计策略,科研人员实现了仿星器永磁体的标准化,即所有永磁体块大小、形状,剩磁强度完全相同,且磁化方向为有限个指定方向之一,从而使得永磁体块可批量生产,降低了加工制造成本。此外,统一的大小、形状使得永磁体块可以拼装起来,有利于装配精度控制。在液氮温度下,Pr-Fe-B磁体的剩磁和矫顽力可以分别达到1.54T和7.0T,足够支持一个采用平面线圈的中等规模仿星器实验装置。最新研究表明,Fe16N2磁体的剩磁可以达到2.9T,其矫顽力理论上大于1.2T。徐国盛课题组提出的标准...
说明: 来源:上海交大材料学院近日,上海交通大学轻合金精密成型国家工程研究中心吴国华教授团队在镁锂合金时效机制方面取得重要研究进展,研究成果以“Origin of the age-hardening and age-softening response in Mg-Li-Zn based alloys”为题,发表在国际金属材料领域顶级学术期刊《Acta Materialia》上 (原文链接为 https://www.sciencedirect.com/science/article/pii/S1359645422000593),该论文也是《Acta Materialia》上发表的第一篇关于镁锂合金时效机制的论文。冀浩博士为该文第一作者,吴国华教授和刘文才副研究员为该文共同通讯作者。该研究得到了国家自然科学基金和装备预研航天科技联合基金等项目资助。镁锂合金具有低密度、高的比刚度和比强度、良好的电磁屏蔽和减震性能等优点,可广泛用于航空航天和电子等领域,作为结构/功能件取代部分铝合金和普通镁合金,起到进一步结构减重的作用。不过,受限于镁锂合金时效软化等瓶颈问题,目前镁锂合金的应用仍十分有限。Mg-Li-Zn基合金是近年来开发的具有较好综合力学性能和应用前景的镁锂合金体系。但目前对于Mg-Li-Zn基合金析出相结构的表征、时效过程中的相转变规律及其对力学性能的影响尚不清晰。因此,深入研究 Mg-Li-Zn基合金的时效析出行为,揭示其时效硬化和软化微观机制,可以为高性能镁锂合金的设计和推广应用提供理论基础。在该研究中,吴国华教授团队系统研究了不同状态 Mg-10Li(-Zn)(-Er)合金的时效行为,借助原子分辨率HAADF-STEM技术等多种表征手段和第一性原理计算,发现了Mg-10Li-5Zn合金时效硬化和软化主要与(Mg, Li)3Zn相演变有关,构建了(Mg, Li)3Zn相的晶体结...
说明: 来源:中国科学报上世纪80年代,科学家发明了一种奇特的激光——飞秒激光,它具有超快、超强和超宽频谱的特点,现在很多眼科近视矫正手术都用到了飞秒激光。不过,飞秒激光与物质相互作用的机理错综复杂,仍然存在很多疑问,连科研人员都琢磨不透它的“脾气”。1月21日,《科学》刊登浙江大学光电科学与工程学院教授邱建荣团队最新成果,研究团队发现了飞秒激光诱导的空间选择性微纳分相和离子交换规律,开拓了飞秒激光三维极端制造新技术,首次在无色透明的玻璃材料内部实现了带隙可控的三维半导体纳米晶结构。这将为新一代显示和存储技术提供新的方向。飞秒激光的惊人之处飞秒是度量时间长短的一种计量单位,也称为毫微微秒,1飞秒为1秒的一千万亿分之一。飞秒激光,顾名思义就是在飞秒的时间段内发出的脉冲激光,也就意味着能量在飞秒间瞬间释放。飞秒激光有何惊人之处?一是瞬时峰值功率非常高,二是能聚焦到比头发的直径还要小的空间区域内,使电磁场的强度比原子核对其周围电子的作用力还要高。这样的强度远远超过了原子内部相互作用的库伦场,所以,飞秒激光脉冲能轻易使电子脱离原子的束缚,形成等离子体。正是因为具有超快超强的特点,飞秒激光被广泛应用于信息、环境、能源、医疗等各个领域。“为什么飞秒激光能用来做手术?因为眼部神经血管很丰富,手术需要稳、准、狠,而这把‘激光刀’干净利索,只对聚焦点区域产生作用,不影响周围环境。”邱建荣说。揭开飞刀秘密当将飞秒激光聚焦到透明材料内部时,会产生一系列基于多种高度非线性效应的物理化学动力学过程。尽管飞秒激光有这么多用处,但是科研人员对其机理依旧知之甚少。邱建荣团队长期从事飞秒激光与材料相互作用研究,并取得一系列高度原创的重要突破。比如他们发现了飞秒激光诱导折射率变化、偏振依赖纳米光栅、沿激光传播方向周期性纳米孔洞等新现象和新机制,开拓了空间选择性操控离子价态、直写三维光波导、析出和擦除功能纳米晶体等新技...
说明: 稿源:cnBeta.COM由美国国家科学基金会资助的研究人员已经开发出一种发光传感器,可以检测和测量一种叫做铽的稀土元素存在。该元素被用于制造汽车电池、智能手机、节能照明和X射线设备等设备。科学家们利用一种与稀土金属结合强度和选择性优异而闻名的蛋白质成功地找到了这种元素,这种方法可用于从以前令人望而却步的环境中提取铽。研究人员使用该传感器测试了来自酸性矿山废物处理设施的样品,这些样品中的铽元素含量很低,并含有其他金属的踪迹。该传感器的性能与ICP-MS质谱法一样好,后者长期以来一直被认为是行业标准。科学家们表示,这一技术进步将有助于建立美国国内铽和其他稀土元素的供应链,方便定位和测量这些有价值材料的来源,包括工业废物和制造业的副产品,如酸性矿井排水和煤炭废料。所涉及的技术也将避免或减少稀土元素收集和检测实践中出现的一些环境问题。研究人员认为,该技术的便携性、经济性和在次优环境条件下的操作能力将改变稀土金属的可持续识别、采购和管理方式。
Copyright ©Copyright 2018  2020 上海市稀土协会 All Rights Reserved 沪ICP备2020034223号
主办单位:上海市稀土协会 指导单位:上海市稀土材料开发应用办公室 承办单位:上海稀土产业促进中心 
犀牛云提供企业云服务