科技动态 Case
联系我们
  • 客服服务电话:021-64321087
  • 商业服务电话:13918059423
  • 技术服务电话:13918059423
  • 联系人:崔老师 
  • 服务邮箱:shxtb@163.com
  • 地址:上海市徐汇区桂林路100号8号楼107室

蓝光LED为何斩获2014诺贝尔奖?

日期: 2018-09-07
浏览次数: 18

瑞典皇家科学院宣布,将2014年诺贝尔物理学奖联合授予日本科学家的赤崎勇(IsamuAkasaki),天野浩(HiroshiAmano)以及美国加州大学圣巴巴拉分校的美籍日裔科学家中村修二(ShujiNakamura),以表彰他们在发明一种新型高效节能光源方面的贡献,即蓝色发光二极管(LED),为能源节省开拓了新空间。

  将新开发的蓝光LED光源与已有的红光与绿光LED光源结合,人们终于可以通过三原色原理产生更加自然和实用的白光照明光源。这三位获奖人将共同分享800万瑞典克朗(约合120万美元)的奖金。他们也因此与该奖项自1901年颁发以来获奖的共196名德高望重的学者一同被铭记在那长长的榜单之上。

  赤崎勇现年85岁,1964年获名古屋大学博士学位,1981年起任名古屋大学教授,现为日本名城大学终身教授、名古屋大学特聘教授。54岁的天野浩与赤崎勇是师生关系,现为日本名城大学教授。

  赤崎勇和天野浩在氮化镓研究中,首次实现了氮化镓的PN结,为利用氮化镓材料制造蓝色发光二极管奠定了基础。2009年11月10日,赤崎勇获得2009年度京都奖尖端技术领域的奖项。京都奖自1985年始设立,面向尖端技术、基础科学、思想和艺术3大领域,其得主中后有数位又将诺贝尔奖收入囊中。

  不是发现,是影响人类的发明

  红色和绿色二极管已经存在了很长时间,但要产生白光,却需要红、蓝、绿三原色同时起作用。原来的二极管因为发光能量太低,所以只能发出红光和绿光,而蓝光意味着需要发出更高能量的光。上世纪80年代末,赤崎勇和天野浩在名古屋大学合作研究,而当时中村修二只是德岛县一家化学公司的雇员。他提出制备氮化镓蓝光发光二极管的设想,仅仅在提出这一设想三年后,中村修二便在《应用物理快报》上发表了生平第一篇英文文章:一种用于生长氮化镓新颖的金属有机物化学气相沉积法。论文一发表便轰动了世界半导体产业界和科学界——当时世界上很多大公司和著名大学科研机构都在为半导体蓝光光源薄膜材料的制备工艺头痛不已,而氮化镓正是III-V族半导体材料中最具有希望的宽禁带光学材料。

  随后,赤崎勇、中村修二、天野浩的研究使得人类得以进入一场光源的革命。“正如他们所说的,这不是一个发现,而是一个发明,这需要在材料和器件上有重大突破,走通从理论到应用的路。正是因为这三位学者从不同的方面进行了突破,使得LED照明应用的推广成为可能。”中科院上海技术物理所所长陆卫称,还有很多学者和这三位学者同期在从事蓝光二极管的研究,但都因为无法在材料和器件制造工艺上取得突破而无法实现自己的研究意图,不得不选择放弃。

  另辟蹊径走别人不走的路

 

  在诺贝尔官网上,可以看到对三位获奖人的描述——当赤崎勇和天野浩、中村修二12月初参加诺贝尔颁奖委员会的庆典时,他们应该会注意到斯德哥尔摩街头的那些灯光,用的就是他们发明的节能LED白光路灯。红光和绿光二极管已经伴随我们半个世纪了,但蓝光才是真正带来革命性变化的技术。只有这三原色的灯光才能形成白光,照亮我们的世界。这三位学者在学术研究和工业界的持续努力,解决了这个过去30多年来一直存在的难题……

  事实上,很多科学家都知道氮化镓,物理学上关于这种材料的能带结构、PN导电类型调控以及发光特性,都有大量的理论和实验上的成果,真正让人头疼的是,要实现这种材料的器件化,必须使基板材料和氮化镓晶格匹配。当时很多科学家都跟风去开发新半导体材料,正如中村修二后来打趣说,因为大公司的研发力量把新材料开发的山头都占满了,他只有另辟蹊径走别人不走的路。

  通过产业化推广照明新技术

  中村修二在短短四年时间克服了两个重大材料制备工艺难题,一个是高质量氮化镓薄膜的生长,另一个是氮化镓空穴导电的调控。为了前者,他通过多达500次的试验,终于在普通蓝宝石基片上获得高电子迁移率的氮化镓薄膜。而后一个问题,则是因为他发现只要控制工艺中的氢气浓度就可以大规模地得到蓝色二极管材料。1994年4月,当中村修二在美国旧金山举办的春季材料会议上打开他发明的蓝色激光器那一瞬间,整个会议厅的科学家们如同小孩看烟火一般,不断发出赞叹的声音。

  中村修二发明的氮化镓发光二极管对人类的贡献显而易见:蓝光LED出现后,可以通过磷激发出红光和绿光,从而混合产生白光和其他各种颜色的光。蓝光LED也有另外的应用,比如,蓝光光盘,从蓝光LED发展出的紫外LED也可以高效净化生活用水;光纤通信的传输效率得到提高;超长使用寿命和高电光转换效率的全固态白光光源将极大促进绿色能源开发进程。

  获奖原因

  三位获奖者在发现新型高效、环境友好型光源,即蓝色发光二极管(LED)方面做出巨大贡献。在蓝光LED的帮助下,白光可以以新的方式被创造出来。使用LED灯,我们可以拥有更持久和更高效的灯光代替原来的光源。

  因为今年的诺贝尔物理学奖,人们在制造节能光源方面进入了“自由之境”。虽然这三位科学家因为发明蓝色发光二极管(LED)获得诺奖让人大跌眼镜,但正是因为这一发明,人类可以制造出任何想要的LED光——蓝色发光二极管不仅使得白光可以以一种新的方式创造出来,而且因为蓝光二极管的出现,人们还可以补齐三原色,使得人类能够制造的LED光源的光谱范围更广,可说是进入自由的境界。

  令人关注的,是这一获奖项目传递的信息:诺贝尔物理学奖近年来似乎日益青睐那些可以给人类生活带来巨大改变的应用性研究。


案例中心 / Case
浏览次数: 73
发布时间: 2018 - 09 - 07
氯化钇化学式YCl3。分子量 195.26。有光泽的白色叶状晶体。其一水合物为无色晶体,160℃失去1分子水。其六水合物为无色或略带红色 晶体,相对密度2.1818,100℃失去5分子水。溶于水、乙醇、吡啶。以往报道显示一定浓度的氯化钇可引起人淋巴细胞DNA分子损伤和对成纤维细胞生长有抑制作用,但也有报道认为氯化钇对红细胞膜无损伤作用,表明氯化钇对不同细胞作用有差异。人皮肤的表皮细胞最易与环境中的氯化钇直接接触,但氯化钇对表皮细胞的影响报道较少。  氯化钇的用途是什么?  1. 氯化钇可用于制备树脂表面复合涂层。如 一种从废弃荧光粉中回收稀土元素 钇并制备树脂表面复合镀层的方法,包括以下步骤:  a、利用筛分法将破碎后的荧光粉与杂质分离开,通过20目、60目、100目、200目网筛逐步筛分后,收集200目筛下物,筛下物占未筛前粉体重量的99.9%以上;  b、将步骤a得到的筛下物加入到酸和双氧水混合液中,反应一段时间,然后进行过滤,滤液中含有稀土元素;  c、将步骤b得到的滤液采用磷系萃取剂进行萃取,分三级萃取后,萃取液中只含有稀土元素;  d、将步骤c得到的含有稀土元素的萃取液用盐酸进行反萃,反萃液中为稀土元素钇,如果萃取液中还含有稀土铕,则稀土铕在萃余液中;  e、将步骤d得到的反萃液加入氨水进行中和至溶液刚有少量白色沉淀产生,溶液主要成份为氯化钇,将氯化钇溶液蒸发浓缩或蒸干再配制成一定浓度后,逐滴加入到配有分散剂的碳酸氢铵溶液中,生成前驱体;  f、将步骤e得到的前驱体过滤、烘干后,进行煅烧,研磨后得到纳米氧化钇粉末;  g、将步骤f得到的纳米氧化钇粉末加入至配有分散剂的电镀液中制成复合电镀 液,电镀至树脂表面。  2. 氯化钇对人表皮细胞作用:钇为稀有元素,在低浓度对表皮细胞体外增殖无影响。氯化钇对紫外线诱导表皮细胞凋亡有一定影响,研究结果显示加入低浓度氯化钇 0....
浏览次数: 65
发布时间: 2018 - 09 - 07
浏览次数: 258
发布时间: 2018 - 09 - 07
1、抛光粉粒径多大?  粒径是这个行业划分抛光粉规格的标准,粒径指的是抛光粉颗粒的直径,单位为μ,常见的抛光粉粒径从0.6——3.2不等,常用的是1.0——2.0之间,根据经验可大概判断粒径小的适合做平磨用,如1.0,1.2,1.4;粒径大的适合做扫光如1.6,1.8,2.0等,最终还是要根据客户的使用习惯来定。粒径跟切削力成正比关系,粒径越大切削力越强,反之越小。每家抛光粉都有几种粒径,但粒径分布的均匀度就需要生产水平把控了,生产水平高可以尽可能的提高标准粒径所占比重,减小最大和最小粒径的范围以及占比。比方说有些产品标号是1.2,但实际上1.2的颗粒只占整体的百分之三十或者更少,其他颗粒参差不齐,甚至最小0.6,最大5.6,所以导致良率下降划伤增多的情况。  2、抛光粉的悬浮性怎样?  很多客户习惯性的把悬浮性作为判断抛光粉品质好坏的依据,所谓悬浮性就是抛光粉兑水搅拌均匀以后,抛光液中粉的沉淀时间长短,沉淀的快说明悬浮性不好,如果沉淀的慢则说明悬浮性好。这种观点有问题,应当根据分散效果判断悬浮性,即当抛光液静置超过两小时后产生沉淀现象,在略加搅拌的情况下是否立即恢复原来的悬浮效果,而不是产生沉淀物结块搅拌不开的情况。很多抛光粉厂家习惯通过添加悬浮剂的方式改善悬浮性,但是如果悬浮剂加的过多或者匹配不好,容易出现结胶(抛光粉凝聚)和腐蚀手的情况。我们对悬浮性非常重视,既要保证悬浮性,又要保证安全和不结胶,做了大量的实验验证。另外水质对悬浮性的影响也比较明显,纯水和自来水兑出来的抛光液对比起来非常明显,建议使用过滤装置或者用纯水兑抛光粉。(每个盖板厂都有纯水生产装置,因为超声波清洗剂需要用到纯水)  3、抛光粉的消耗大不大(耐不耐用?)  这个问题也比较常见,有些厂家会反应用品牌A的抛光粉,一台机器一个班只需要添加0.5KG,用品牌B 就需要0.7甚至更多。首先需要搞...
浏览次数: 242
发布时间: 2018 - 09 - 07
镍氢(MH-Ni)电池自1989年商业化以来,其负极材料主要是LaNi5型储氢合金。随着镍氢电池制备技术的不断提升以及性能的极大提高,其应用领域更加广泛,对电池材料性能的要求也越来越高,特别是与电池能量密度密切相关的电极材料的容量性能。电池的容量主要是由电池正、负极的容量确定的,但正极氢氧化亚镍的容量提高已经有限,因此人们就把研究重点放在了负极储氢合金的研究上面。LaNi5型储氢负极合金的实际最大容量(350 mAh g–1)已经接近其理论值(372 mAh g–1),进一步提高相当困难,因此,必需研究开发具有更高容量的新型储氢合金。近年来,高容量La-Mg-Ni系储氢合金(理论容量超过400 mAh g–1,实际最大容量390 mAh g–1)的研究获得了许多有价值的成果,已产业化并应用于制造低自放电镍氢电池和某些高容量镍氢电池。但La-Mg-Ni合金的制备工艺成本高或工艺过程复杂,主要原因在于:合金中必需含有的活泼金属元素Mg的蒸汽压高,易挥发,使得高温熔炼合金的成分难以控制,同时挥发的微细镁粉易燃易爆而存在安全隐患。国内主要使用高价值的氦气作为保护气制备La-Mg-Ni合金,日本采用熔炼La-Ni合金然后扩散Mg的二次制备工艺技术。为了解决La-Mg-Ni基储氢合金制备工艺存在的问题,包头稀土研究院储氢材料项目组经过多次试验研究发现,用Y元素替代La-Mg-Ni基储氢合金中的Mg元素,获得了同样高容量的La-Y-Ni储氢合金,可直接用真空感应熔炼法制备。2014年以来,开发的A2B7型La-Y-Ni储氢合金经合理的成分优化后实际放电容量可达到390 mAh g–1,气相储氢量可达到1.49 wt%(相应的电化学容量为399 mAh g–1),与La-Mg-Ni基储氢合金的容量相当,而且由于不含活泼的Mg元素,循环寿命更好。该系列合金已申报8项国家发...
Copyright ©Copyright 2018  2020 上海市稀土协会 All Rights Reserved 沪ICP备2020034223号
主办单位:上海市稀土协会 指导单位:上海市稀土材料开发应用办公室 承办单位:上海稀土产业促进中心 
犀牛云提供企业云服务