来源:合肥物质科学研究院近期,中国科学院合肥物质科学研究院等离子体物理研究所在集成永磁体和简单线圈的先进仿星器设计研究取得进展,相关研究成果发表在Cell Reports Physical Science上。仿星器是聚变三乘积参数仅次于托卡马克的磁约束核聚变途径,与托卡马克相比,具有稳态运行的优势,避免了托卡马克的主要缺点:等离子体大破裂。然而,长期以来,仿星器并没有作为聚变堆技术路线的首选,主要原因有两个:一是传统仿星器磁场的波纹度比托卡马克大,导致其新经典输运水平和高能粒子损失水平高于托卡马克。二是仿星器需要三维结构的线圈,结构复杂、制造难度大、成本高。针对这两个难点,科研人员已在前期工作中开展研究并取得进展。长期以来,仿星器研究领域试图通过优化磁场位形来降低仿星器的新经典输运水平和高能粒子损失水平。研究发现,可通过仿星器磁场位形优化实现精确准对称,证明了仿星器可以实现和托卡马克相当的新经典输运水平和高能粒子损失水平(Physical Review Letters)。当前,国际上尚未采用精确准对称位型的仿星器装置来验证该发现,这为我国仿星器研究提供了发展机遇。此外,科研人员发现可以引入永磁体来简化仿星器的线圈(Phyical Review Letters)。引入永磁体之后,仿星器可以采用和托卡马克一样的平面线圈,从而降低建造的难度和成本。由于主要的环向磁场由线圈来产生,永磁体仅...
发布时间:
2022
-
02
-
21
浏览次数:26
稿源:cnBeta.COM美国和中国都计划在未来十年向火星发射载人任务。虽然这代表了空间探索方面的巨大飞跃,但它也带来了重大的后勤和技术挑战。首先,每隔26个月,当我们的两颗行星处于彼此轨道的最近点时('对角'期间),才能向火星发射任务。使用目前的技术,从地球到火星需要六到九个月的时间。即使使用核热或核电推进(NTP/NEP),单程可能需要100天才能到达火星。然而,蒙特利尔麦吉尔大学的一个研究小组评估了激光-热推进系统的潜力。根据他们的研究,一个依靠新型推进系统的航天器--激光被用来加热氢气燃料--可以将到达火星的过境时间减少到仅45天。这项研究由Emmanuel Duplay领导,他是麦吉尔大学的毕业生,目前是代尔夫特理工大学航空航天工程硕士生。他与安德鲁-希金斯副教授和麦吉尔大学机械工程系的多名研究人员一起工作。他们的研究题为'利用激光-热力推进的快速过境火星任务的设计',最近提交给了《天文学和天体》杂志。近年来,定向能(DE)推进一直是相当大的研究和兴趣的主题。这方面的例子包括星光计划--也被称为星际探索定向能推进(DEEP-IN)和定向能星际研究(DEIS)计划,由菲利普-卢宾教授和加州大学洛杉矶分校实验宇宙学小组(ECG)开发。作为2009年开始的美国宇航局资助的研究的一部分,这些计划旨在为星际任务调整大规模定向能应用。还有Breakth...
发布时间:
2022
-
02
-
21
浏览次数:17
稿源:量子位你知道吗?在地球上,楼层越低,时间过得越慢。这可不是玄学,而是爱因斯坦广义相对论预言的时间膨胀效应:引力越大,时间越慢。今天Nature封面的一篇文章证明了,即使高度差只有一毫米,时间流逝的速度也不一样,这是迄今为止在最小尺度上验证广义相对论的实验。该研究来自于美国科罗拉多大学JILA实验室的叶军团队。他率团队开发出世界上最精确的原子钟,得出在一毫米高度差上,时间相差大约一千亿亿分之一,也就是大约3000亿年只相差1秒,与广义相对论预言一致。这种由于引力不同造成的时间差叫做引力红移,虽然已经得到无数次验证,但是如此高精度的检测还是头一次。引力改变光频率广义相对论指出,引力场越强,时间就越慢,从而改变电磁波的频率。如果一束蓝光射向天空,在引力的作用下,就会向红色端移动,称之为“引力红移”。虽然爱因斯坦早在1915年就预测了这种现象,但是这种“移动”非常小,直到1976年才有了第一次精确的实验验证。当时科学家用火箭将原子钟送到1万公里的高空,发现它比海平面时钟快,大约73年快一秒。虽然这种差距身体无法感知,但却与我们的生活息息相关,因为GPS必须要修正这个极小的时间差才能精确定位。几乎在12年前的同一天,来自UC伯克利的团队测量了高度差33厘米的两个原子钟的时间差。现在叶军团队可以做到测量一个原子云内,原子气体上下两端的时间差,而二者之间高度只相差一毫米!超精准的光晶格钟为...
发布时间:
2022
-
02
-
18
浏览次数:16
原创 倍感自豪的 中国地质大学北京近日,我校顾雪祥教授团队、董国臣教授团队发现的三个新矿物镁高铁角闪石、莫片榍石及钙碳镧矿分别被经国际矿物学协会新矿物命名与分类委员会(IMA-CNMNC)批准。一起来看!镁高铁角闪石经国际矿物学协会新矿物命名与分类委员会(IMA-CNMNC)审查与投票,我校章永梅副教授、顾雪祥教授与核工业地质研究院范光研究员和李婷研究员等申报的新矿物正式获得批准,编号为IMA2021-100。该新矿物被命名为“Magnesio-ferri-hornblende”,中文名为“镁高铁角闪石”,缩写名为Mfhbl。国际矿物学协会新矿物命名与分类委员会确认信角闪石是造岩矿物中一种重要的超族矿物,迄今人类认知并得到国际矿物协会新矿物命名及分类委员会认可的角闪石矿物种数量已超过100个,但在这些角闪石超族矿物种成员中,由我国学者发现的寥寥无几。作为火成岩中常见的硅酸盐矿物,角闪石的结构和化学组成对揭示岩浆起源演化、岩石成因、成岩物理化学条件以及岩体含矿性评价等方面具有十分重要的标识作用。新发现的镁高铁角闪石属钙质角闪石,晶体化学式为Ca2(Mg4Fe3+)[(Si7Al)O22](OH)2,单斜晶系,空间群C2/m,晶胞参数a = 9.8620(3), b = 18.1060(5), c = 5.3081(1) Å, β =104.848(1)&...
发布时间:
2022
-
02
-
17
浏览次数:17