工学院陆启阳团队在离子调控氧化物结构和性能领域取得新进展
日期:
2023-12-06
浏览次数:
62
利用质子对功能氧化物材料(如镍基钙钛矿氧化物(NdNiO3))进行调控,以此设计材料本身的物理与化学性质,是近年来固态离子学和氧化物薄膜材料学界的研究热点之一。例如调控镍基钙钛矿氧化物质子浓度,可以改变其电子电导、离子电导、可见光透射率等性质。其潜在应用涉及忆阻器、传感器、燃料电池与智能窗户等多个领域。但是,镍基钙钛矿氧化物质子化是一个复杂的物理化学过程,我们对质子如何与镍基钙钛矿氧化物相互作用的理解还不完整。为了更好地理解镍基钙钛矿氧化物质子化过程,西湖大学工学院陆启阳团队使用水溶液电化学方法研究镍基钙钛矿氧化物的质子化过程,发现镍基钙钛矿氧化物晶格在质子化过程中发生了巨大的化学膨胀。同时,研究团队基于水溶液电化学方法制备了一种新型的电化学器件,实现了单一薄膜器件空间上质子浓度的梯度分布。利用质子浓度梯度分布这一特性,研究团队在一个器件中研究了材料晶体结构、电子结构、电子输运与质子浓度之间的关系。该成果以“Protonation-Induced Colossal Chemical Expansion and Property Tuning in NdNiO3 Revealed by Proton Concentration Gradient Thin Films”为题发表在国际期刊《Nano Letters》上,第一作者为西湖大学工学院博士生陈浩文与西湖大学理学院博士生董明东,通讯作者为西湖大学助理教授陆启阳博士。该工作的合作者包括中国科学院物理研究所的郭尔佳研究员、张庆华副研究员,清华大学谷林教授以及西湖大学理学院吴颉研究员。利用三电极体系水溶液电化学方法,研究者通过施加一个还原电压,将质子掺杂到镍基钙钛矿氧化物的晶格之中,形成了一个稳定的质子化相HxNdNiO3。通过高分辨薄膜X射线衍射仪分析发现质子化相的晶格常数膨胀达到了13%(图1. (b))。而在之前报道的所有氧化物体系中,由质子化引起的晶格膨胀数值最高为3%,远小于我们在这个体系中发现的数值。如此巨大的晶格膨胀为本课题组首次发现,这有助于我们更好地理解氧化物材料中的力-化学耦合,以及设计如电化学执行器功能器件等。我们继续通过扫描透射电镜(Scanning Transmission Electron Microscopy, STEM)对质子化相进行分析,发现质子化相的晶格表现出很大的NiO6八面体扭曲和Nd阳离子位移(图1. (c)&(d))。传统的研究方法需要合成大量的样品用于研究氧化物的质子化过程。这样一个过程需要进行大量的工作,且容易导致实验误差,影响实验结果的准确性。而在我们通过水溶液电化学方法设计的新型器件中,我们在样品两端施加了不同大小的还原电压,使得电势在样品中呈梯度分布。电势的空间梯度分布驱动质子浓度在空间上也由低至高呈梯度分布。结合具有空间分辨率的表征与测试技术,如X射线衍射、X射线光电子能谱、飞行时间二次离子质谱、低温电子输运测量等,我们可以在一个样品中研究晶体结构、电子结构、电子输运等物理性质与质子浓度之间的关系,精准构筑物理性质和质子浓度之间的定量关系和相图。我们首先使用了飞行时间二次离子质谱确定了样品中质子浓度在空间上呈梯度分布。使用薄膜X射线衍射仪在微区上对样品进行表征,我们发现镍基钙钛矿氧化物在质子化过程中晶格存在两相共存的区域。我们通过X射线光电子能谱的表征分析样品的价带,发现镍离子的价态随着质子浓度的上升而降低。通过低温电子输运测试,我们发现少量的质子能够完全抑制镍基钙钛矿氧化物本身存在的金属-绝缘体相变,使样品完全变为金属,电阻率随着温度降低而降低。在这项工作中,我们系统地研究了质子掺杂镍基钙钛矿氧化物中质子浓度与结构和物性之间的关系。此项工作进一步为研究氧化物中离子电导、离子扩散、光学性质、催化性质等物理化学性质与质子浓度之间的关系打下了坚实的基础。
Hot News
/
相关推荐
2025
-
07
-
02
点击次数:
4
来源:X-MOL在网格化学合成领域,高连接框架材料的精准构筑一直是研究者面临的重要挑战。拓扑网络理论作为指导材料设计的关键工具,为高连接框架材料的定向合成提供了重要理论基础。在以往的研究中,相关研究人员主要利用高连接的锆簇(Zr6)和稀土簇(RE9),或者是高连接的金属有机多面体(MOP)去构建了一系列的高连接金属有机框架,包含了(4,12)-连接的shp和ftw网络、(6,12)-连接的alb网...
2025
-
07
-
02
点击次数:
2
来源:X-MOL源自荧光团和 Ln3+ 的光致发光,构建了荧光团在镧系金属有机框架 (Ln-MOF) 中的封装,有助于 Ln-MOF 具有迷人的比例发光传感性能。本文为 3D Eu (III) MOF {[(CH3)2NH2]2[Eu2(TPTC)2·(合成了 H2O)2]·2DMF·8H2O}n(Eu-MOF,H4TPTC = 三苯基-3,3“,5,5”-四羧酸)及...