综合新闻 News
联系我们
  • 客服服务电话:021-64321087
  • 商业服务电话:13918059423
  • 技术服务电话:13918059423
  • 联系人:崔老师 
  • 服务邮箱:shxtb@163.com
  • 地址:上海市徐汇区桂林路100号8号楼107室

Angew. Chem.:激光器调节让上转换荧光调控更便捷

日期: 2022-09-26
浏览次数: 9

来源:X-MOL

荧光寿命不仅可以反映发光动力学过程,也可以作为独特的光学特征维度用于荧光编码、光学防伪、生物成像及分子/病毒检测等,因此对其调控方法及潜在机理的研究具有重要意义。目前已有的研究多通过控制掺杂浓度、颗粒尺寸、特殊核壳结构等化学方法进行稀土离子上转换荧光寿命调控,即内参法。然而,对于控制激发光(脉冲宽度、功率)来实现颗粒内部能量状态及荧光寿命的变化还没有研究,也因此,对激发与衰减动力学关系及其对瞬态发光影响的研究还是空白。近日,南京工业大学、新疆大学黄岭教授(点击查看介绍)与南开大学宋峰教授(点击查看介绍)合作仅通过控制激发光源参数,即外参法,就在同一个纳米颗粒上实现了超20倍的荧光寿命调节,并且首次观察到红⇔绿双向可调节的瞬态发光。

在稀土发光材料内部,敏化剂离子吸收的激发光能量可以通过能量传递直接作用于激活剂离子发光,也可通过多步能量迁移作用于远离初始激发位的激活剂离子发光。这两种不同的过程所产生的微小的时间差使得每一个稀土离子的激发与发射都不同步,因此稀土材料的发光实际上是所有稀土离子在某一特定时间发光的统计结果。而能量迁移与能量传递过程对激发光脉宽与功率的不同响应将导致激活剂离子不同的激发与衰减动力学,并最终导致可被激发光调节的瞬态发光光谱与瞬态发光颜色。实验结果表明,通过改变激发光脉宽可使Er3+在540 nm处的荧光寿命从26.8微秒调节的536.3微秒,而红绿光强度比可以从0.26变化到18.15。进一步研究证实,激发调制荧光寿命的现象普遍存在于尺寸大于20 nm以上材料中。

该工作研究了稀土离子的荧光寿命“动态”响应的内在机理,证实了激发(上升沿)与发射(下降沿)之间的内在关联,首次在仅改变激发光的条件下实现超20倍荧光寿命调控,基本界定了荧光寿命与激发脉宽、功率及自身尺寸的关系,填补了目前该领域的研究空白。该研究成果提供了不依赖于繁冗的材料化学设计与合成实现荧光寿命与发光颜色大幅度调控的方法,为理解稀土掺杂上转换发光材料的荧光寿命和发光动力学过程提供了新视角,也为与荧光寿命相关的激光产生、快速成像、传感等应用提供了新启示。

这一成果近期发表在Angewandte Chemie International Edition 上,文章的第一作者是韩迎东博士和高潮博士,通讯作者为宋峰教授(南开大学)和黄岭教授(南京工业大学、新疆大学)。



Hot News / 相关推荐
  • 2025 - 05 - 09
    点击次数: 211
    2025年5月9日上午,海关总署风险防控局(上海)和上海海关风险防控分局领导到上海市稀土协会开展调研交流座谈会,旨在深入了解稀土产业现状、面临的问题以及发展趋势,为海关制定更科学合理的政策和支持产业高质量发展的措施提供依据。协会部分会员代表出席本次会议。吴建思秘书长主持会议并介绍了参会人员,协会副会长,上海三环磁性材料有限公司总经理饶晓雷代表协会致欢迎辞,对海关领导的到来表示热烈欢迎,并希望通过本...
  • 2025 - 05 - 09
    点击次数: 261
    2025年5月9日上午,海关总署风险防控局(上海)和上海海关风险防控分局领导到上海市稀土协会开展调研交流座谈会,旨在深入了解稀土产业现状、面临的问题以及发展趋势,为海关制定更科学合理的政策和支持产业高质量发展的措施提供依据。协会部分会员代表出席本次会议。吴建思秘书长主持会议并介绍了参会人员,协会副会长,上海三环磁性材料有限公司总经理饶晓雷代表协会致欢迎辞,对海关领导的到来表示热烈欢迎,并希望通过本...
  • 2025 - 05 - 09
    点击次数: 81
    来源:Advanced Electronic Materials基于磁热效应的磁制冷技术因其环境友好,效率高等优点而受到广泛关注。但是,目前的磁制冷材料很难满足实际应用需求。主要表现在大磁熵变峰值和大的制冷能力难以同时兼顾。由于磁热效应通常伴随着磁结构的变化,所以解决此问题方法之一就是寻找具有多重磁相变的磁制冷材料,其在保证大磁热效应的同时,又能在一定程度上加宽制冷温区从而增加制冷能力。因此厘清这...
  • 2025 - 05 - 09
    点击次数: 74
    来源:Journal of the European Ceramic Society 随着“双碳”(碳达峰和碳中和)目标的提出,降低能耗和提高能源效率已成为关键问题。通过高级隔热材料减少热传递是提高能源效率和降低全球总能耗的有效方法。特别是在建筑、制造、航空航天和太阳能集中领域,绝缘材料可用于节省能源并保护绝缘物体免受温度波动的影响。理想的保温材料应具备低密度、低导热性、良好的机械性能和...
  • Copyright ©Copyright 2018  2020 上海市稀土协会 All Rights Reserved 沪ICP备2020034223号-1  沪公网安备 31010402010140号
    主办单位:上海市稀土协会 指导单位:上海市稀土材料开发应用办公室 承办单位:上海稀土产业促进中心 
    犀牛云提供企业云服务