综合新闻 News
联系我们
  • 客服服务电话:021-64321087
  • 商业服务电话:13918059423
  • 技术服务电话:13918059423
  • 联系人:崔老师 
  • 服务邮箱:shxtb@163.com
  • 地址:上海市徐汇区桂林路100号8号楼107室

超快光纤激光技术之二十九 175W掺镱棒状光纤CPA系统

日期: 2023-01-19
浏览次数: 14

原创 史卓 光波常

本篇文章来自丹麦NKT公司,在单根光纤中实现了175W的输出[1]。光纤激光器的平均功率受制于TMI(transverse mode instability)现象:当平均功率超过某个阈值时,热效应将导致高阶模式与基模产生耦合,严重影响激光的质量和稳定性。NKT公司通过对棒状光纤的结构进行改进,通过增大高阶模式的损耗的方式提升了TMI阈值。

超快光纤激光技术之二十九 175W掺镱棒状光纤CPA系统

图1 实验装置[1]

图1为实验装置示意图,由前端、主放大、压缩和测量四部分组成。前端部分的种子源产生中心波长为1029 nm、脉宽170 fs、重复频率40 MHz、带宽6.8 nm的脉冲,经展宽、选单和放大后,平均功率变为500 mW,脉宽为1.5 ns,重复频率为750 kHz。其中的第三级放大(Amp3)采用NKT生产的14/135双包层光纤。在主放大部分,第四级和第五级放大均采用芯径为85 μm的棒状光纤,其中第四级输出功率为25 W。第五级放大所用的掺镱光纤经过了特殊设计来抑制高阶模式,放大后脉冲的平均功率高达248 W,脉冲能量为333 μJ。压缩部分由四块光栅组成,压缩效率为80 %,最终可以得到平均功率175 W、脉冲宽度357 fs、脉冲能量233 μJ的脉冲,M2为1.2。

超快光纤激光技术之二十九 175W掺镱棒状光纤CPA系统

图2 输出光束的功率及模场直径 [1]

图2(a)展示了压缩前和压缩后的功率,以及第五级输出的模场直径与泵浦功率的关系。压缩前斜效率为0.68,压缩后为0.52,在热透镜效应的影响下,模场直径由60 μm下降为50 μm。由于TMI效应与光子暗化密切相关[2],而光子暗化的影响体现在长期实验中,因此NKT对整套系统进行了长达4000小时的测试,如图2(b)所示。在光子暗化的影响下,输出功率逐渐下降,其中前30小时下降了4 W,而4000小时内共下降10 W;纤芯的发热逐渐增强,热透镜效应与光子暗化对折射率的改变共同导致模场直径减小了2 μm,模场直径的变化在最后1000小时达到饱和。

超快光纤激光技术之二十九 175W掺镱棒状光纤CPA系统

图3 输出激光的光斑、光谱及自相关曲线[1]

图3展示了0小时、2075小时和4150小时的时候压缩前光斑、压缩后的光谱和自相关曲线,并使用双曲正割对自相关进行拟合。脉冲的光谱基本保持稳定,平均带宽为5.5 nm,对应的变换极限脉宽为330 fs。光谱在长波段受光栅大小的限制而截断,在中心则存在一些波动,这是非线性相移造成的,在时域上表现为未能压缩的小旁瓣。脉冲宽度受实验环境变化(如温度波动等)影响较大,但在大部分时间内均小于400 fs,平均值是357 fs,形状与双曲正割拟合较为匹配。在压缩之前,M2为1.04×1.04,压缩后则为1.21×1.17。

目前,研究TMI现象的主要方式为使用小孔滤出输出光的一小部分,然后使用PD探头测量其功率并多次计算标准差,根据标准差的分布和变化情况确定TMI的强弱[3]。这篇文章的作者发明了一种叫做空间和时间分辨成像的技术[4]对压缩前光束进行分析,使用的装置更加复杂,但获得的信息也更多。该技术使用高速相机探测整体光场的强度,傅里叶变换后(如式(1)所示)再在空间上积分,得到功率的频谱,如式(2)所示。

超快光纤激光技术之二十九 175W掺镱棒状光纤CPA系统

图4 输出激光功率谱及高频成分的形态[1]

当TMI现象出现时,功率频谱的50 Hz到1 kHz范围内将出现多个峰值,图4(a)就展示了4000小时内压缩前功率在频域的变化,从图中可以看出频谱上存在一系列尖峰,其中的两次跳变是由更换采样时间所致。图4(b)为高于50Hz的频谱成分相对直流分量的比例,该值基本低于30dBc且较为稳定,说明TMI现象并不严重,且不受光子暗化程度的影响,因此NKT针对棒的改进成功的提升了TMI阈值。图4(c)为一些尖峰处的光强及其相位的分布情况。

总之,NKT公司在单根纤芯的棒状光纤CPA系统中获得了中心波长1030 nm、脉宽357 fs、重复频率750 kHz、平均功率175 W、脉冲能量233 μJ、M2为1.2的较为稳定的激光输出。在4000小时的长期运行中出现的光子暗化效应不会导致TMI现象的加强,证明大模场直径棒状光纤是产生衍射极限的兆赫兹、毫焦飞秒激光的理想增益介质,更好的热量管理和更大的芯径为平均功率的进一步提升提供了可能。

参考文献:

[1] Martin E. V. Pedersen, Mette M. Johansen, Anders S. Olesen, Mattia Michieletto, Maxim Gaponenko, and Martin D. Maack, '175 W average power from a single-core rod fiber-based chirped-pulse-amplification system,' Opt. Lett. 47, 5172-5175 (2022).

[2] Hans-Jürgen Otto, Norbert Modsching, Cesar Jauregui, Jens Limpert, and Andreas Tünnermann, 'Impact of photodarkening on the mode instability threshold,' Opt. Express 23, 15265-15277 (2015).

[3] C. Stihler, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, 'Experimental investigation of transverse mode instabilities in a double-pass Yb-doped rod-type fiber amplifier, ' Proc. SPIE 10083, Fiber Lasers XIV: Technology and Systems, 100830R (2017).

[4] Simon L. Christensen, Mette M. Johansen, Mattia Michieletto, Marco Triches, Martin D. Maack, and Jesper Lægsgaard, 'Experimental investigations of seeding mechanisms of TMI in rod fiber amplifier using spatially and temporally resolved imaging,' Opt. Express 28, 26690-26705 (2020).


Hot News / 相关推荐
  • 2025 - 05 - 08
    点击次数: 72
    来源:中国科学院物理研究所北京凝聚态物理国家研究中心庞磁电阻(Colossal magnetoresistance, CMR)锰酸盐是一类以钙钛矿结构的掺杂锰氧化物(如RE1-xAExMnO3,RE为稀土金属,AE为碱土金属)为代表的材料,其核心特征是在磁场作用下电阻发生巨大变化。这类材料的研究热潮始于20世纪90年代,并在随后的二十多年中持续成为凝聚态物理和材料科学的前沿热点领域。CMR锰酸盐在...
  • 2025 - 05 - 08
    点击次数: 73
    来源:华南师范大学化学学院近年来,通过将分子催化剂封装于超分子组装体中构建主客体催化体系引起了广泛关注。这类体系可通过协同主体与客体的功能/催化活性,实现高活性与高选择性,甚至完成复杂催化反应。目前,多种超分子组装体(如共价笼、配位笼)已被开发为主体外壳,用于构建主客体催化体系并应用于多种催化转化。然而,此类体系在复杂催化反应(如级联反应)中的应用仍鲜有报道。该领域的主要挑战在于如何赋予主体预期的...
  • 2025 - 05 - 07
    点击次数: 74
    来源:福建物质结构研究所近红外染料敏化作用可以克服稀土离子(如Yb3+ 和Nd3+)宇称禁戒跃迁的固有局限,显著增加稀土掺杂无机纳米晶的吸收,为开发高效稀土纳米光学诊疗材料提供了新途径。目前应用于光热转换的染料敏化稀土纳米晶的研究仍处于初步阶段,其中所涉及的激发态动力学及界面相互作用尚不明确。近日,中国科学院福建物质结构研究所/闽都创新实验室的陈学元团队卢珊研究员等成功研发出一种基于染料敏化的cy...
  • 2025 - 05 - 07
    点击次数: 63
    来源:厦门大学化学化工学院近日,我院陈嘉嘉教授利用多金属氧酸盐为光储能电对的光驱动低能耗电解水制氢研究取得重要进展,相关研究成果以“Tunable Multi-electron Redox Polyoxometalates for Decoupled Water Splitting Driven by Sunlight”发表在Nature Communications(DOI:10.1038/s4...
  • Copyright ©Copyright 2018  2020 上海市稀土协会 All Rights Reserved 沪ICP备2020034223号-1  沪公网安备 31010402010140号
    主办单位:上海市稀土协会 指导单位:上海市稀土材料开发应用办公室 承办单位:上海稀土产业促进中心 
    犀牛云提供企业云服务