综合新闻 News
联系我们
  • 客服服务电话:021-64321087
  • 商业服务电话:13918059423
  • 技术服务电话:13918059423
  • 联系人:崔老师 
  • 服务邮箱:shxtb@163.com
  • 地址:上海市徐汇区桂林路100号8号楼107室

郑克志课题组在Nano Letters发表最新研究进展

日期: 2024-05-14
浏览次数: 89

来源:华南师范大学物理学院

近日,我院郑克志副教授与吉林大学王菲教授课题组合作,在稀土纳米晶掺杂的S波段聚合物光波导放大器的研究中取得了新突破。相关成果以“Boosting the Downconversion Luminescence of Tm3+-Doped Nanoparticles for S-Band Polymer Waveguide Amplifier”为题,发表于国际权威期刊《Nano Letters》上。 

光波导放大器是现代光通信系统的核心器件。与光纤放大器相比,光波导放大器具有制造工艺简便、器件尺寸小、易与其它小型化器件实现硅基片上集成等优点。近年来,随着集成光子学的迅猛发展,利用集成光波导构建低功耗和高稳定性光放大器的工作引起了研究者们的极大关注。借助稀土纳米晶掺杂,研究者们已经获得了C波段聚合物光波导放大器大量有价值的研究结果。但是,由于其它光通信波段较低效率的稀土离子光发射,工作在S, L等低损耗波段的聚合物光波导放大器鲜有报道,难以满足未来光通信对带宽的需求。为了解决这一问题,本研究提出在NaYbF4:Tm3+纳米颗粒中引入去激活离子Tb3+,利用Tm3+到Tb3+离子的能量传递加速Tm3+离子3F4能级的衰减,从而获得了Tm3+离子1464 nm(3H4→3F4)下转换发光效率增强一倍的结果。将制备的稀土纳米晶通过其表面的不饱和双键与PMMA聚合,不仅避免了纳米晶在聚合物基质中团聚问题,同时大幅提高了稀土纳米晶的掺杂浓度。利用稀土纳米晶-PMMA复合材料作为增益介质构造了光波导放大器,采用980 nm激光作为泵浦光,利用此类复合聚合物光波导放大器在1464 nm处获得了18 dB的相对增益。这项工作提出了一种提高Tm3+离子下转换发光的新方法,为开发稀土纳米晶掺杂的S波段聚合物光波导放大器开辟了新思路。 

我院硕士研究生陈莹为论文第一作者,我院郑克志副教授与吉林大学王菲教授为论文共同通讯作者,参与工作的还有我校华南先进光电子研究院詹求强教授等,华南师范大学为该论文的第一完成单位。该工作得到了国家自然科学基金、广东省卓越青年团队项目、广东省自然科学基金和广州市科技计划项目等的支持。 

论文链接:

https://pubs.acs.org/doi/10.1021/acs.nanolett.3c04725


Hot News / 相关推荐
  • 2025 - 02 - 14
    点击次数: 175
    来源:天津大学稀土元素是全球争夺的战略性金属资源。我国稀土资源丰富,种类齐全,储量居世界首位,但其综合利用效率普遍偏低。探索与发展新的稀土应用技术,促进稀土的高质化利用是我国该领域研究亟待解决的重要课题。稀土的催化应用是实现稀土资源高效利用的最有效途径之一。因此,发展稀土金属有机配合物,发掘它们在催化有机合成化学领域的应用具有重要的科学研究意义及应用价值。近日,天津大学分子+研究院丛雪丰教授课题组...
  • 2025 - 02 - 14
    点击次数: 154
    来源:南京大学元素周期表IIIB族中,钪(Sc)、钇(Y)、镧系(Ln)共17种元素被统称为稀土元素。稀土元素具有优异的光、电、磁等物理和化学特性,在现代科技和工业等众多领域有着广泛且重要的用途。例如,钕和钐作为稀土界的明星元素,是制造高性能永磁材料的关键成分,推动新能源发展;铈在汽车尾气净化领域大显身手,可作为催化剂,有效降低汽车尾气对环境的污染。因此,鉴于稀土的重大价值,各国纷纷加大投入力度,...
  • 2025 - 02 - 13
    点击次数: 196
    近期,中国科学院上海光学精密机械研究所先进激光与光电功能材料部研究团队联合高功率激光元件技术与工程部研究团队在n型β-Ga2O3单晶光电性能调控方面取得进展,相关成果以“Tungsten donors doping in β-gallium oxide single crystal”为题发表于Applied Physics Letters。阅读原文
  • 2025 - 02 - 13
    点击次数: 144
    来源:清华大学物理系硫化物固态电解质Li5.5PS4.5Cl1.5具有锂离子电导率高(≈10 mS/cm)、机械加工性能优异、与金属锂负极的化学兼容性良好等优点,是构建具有高能量密度与高安全性的全固态锂金属电池的最具潜力的候选电解质材料之一。尽管如此,仍有大量研究表明,即使在较低的电流密度下(0.5-1 mA/cm2),全固态金属锂电池中锂枝晶穿透硫化物固态电解质层导致电池短路的问题依然无法避免。...
  • Copyright ©Copyright 2018  2020 上海市稀土协会 All Rights Reserved 沪ICP备2020034223号-1  沪公网安备 31010402010140号
    主办单位:上海市稀土协会 指导单位:上海市稀土材料开发应用办公室 承办单位:上海稀土产业促进中心 
    犀牛云提供企业云服务