梁晓亮、伍普球等-AM:铁(氢)氧化物-黏土矿物复合体对离子吸附型稀土元素富集-分异的制约
日期:
2025-01-06
浏览次数:
90
华南离子吸附型稀土矿床是全球最重要的中重稀土资源基地。揭示稀土元素的富集-分异机制,对该类稀土矿床的找矿勘探和高效开采具有重要意义。已有研究发现,在离子吸附型稀土矿床中,黏土矿物是稀土元素的主要载体矿物,但黏土矿物主要以静电引力吸附稀土元素,不会导致其分异。事实上,华南红壤中存在大量的铁(氢)氧化物微-纳米颗粒,并与黏土矿物形成复合体。目前,关于二类矿物对稀土元素富集-分异作用的贡献等研究尚未见报道。为此,中国科学院广州地球化学研究所矿物表面物理化学学科组对广东仁居离子吸附型稀土矿床开展系统研究,发现风化壳中的黏土矿物以伊利石、高岭石和埃洛石为主,铁(氢)氧化物主要为水铁矿、针铁矿和赤铁矿,二类矿物形成了复合体。从半风化层到表土层,复合体的物相组成从长石/伊利石-水铁矿/针铁矿向高岭石/埃洛石-针铁矿/赤铁矿转变,最终在表土层形成高岭石-赤铁矿复合体。在复合体中,稀土元素主要以离子交换态和铁氧化物结合态存在。其中,离子交换态稀土元素占较大比例,但没有表现显著分异,而铁(氢)氧化物结合态则明显富集中重稀土,同时晶态铁(氢)氧化物结合态的中重稀土富集程度更高。模拟实验进一步发现,黏土矿物与铁(氢)氧化物分别通过静电引力和络合作用吸附稀土元素。轻稀土(如钕)主要分布于黏土矿物表面,随硫酸铵浸取大量溶出。而重稀土(如镱)主要分布在铁(氢)氧化物表面,具有较高的稳定性,不易被硫酸铵浸出(图1)。研究结果揭示了黏土矿物和铁(氢)氧化物对离子吸附型矿床中稀土元素富集-分异的控制机制,有助于理解和掌握离子吸附型稀土矿床的形成机制。该研究得到了国家自然科学基金(41921003,42022012),国家重点研发计划(2021YFC2901701)等项目联合资助。相关成果近期发表于矿物学重要期刊《American Mineralogist》。论文信息:Liang Xiaoliang *,Wu Puqiu,Wei Gaoling,Yang Yiping,Ji Shichao,Ma Lingya,Zhou Jingwen,Tan wei,Zhu Jianxi,Yoshio Takashi. Enrichment and fractionation of rare earth elements (REEs) in ion-adsorption-type REE deposits: Constraints of an iron (hydr)oxide-clay mineral composite. American Mineralogist,2025,110: 114-135.
Hot News
/
相关推荐
2025
-
01
-
21
点击次数:
11
来源:北京大学化学与分子工程学院北京大学化学与分子工程学院张文雄课题组近期在《美国化学会志》(Wei Liu, Ping Wu, Yibo Liang, Junnian Wei, Gen Luo*, Wen-Xiong Zhang,* J. Am. Chem. Soc. 2025, 147, 1300-1306)上以全文形式发表一篇题为“Rare-Earth Metal-Enabled Ring-...
2025
-
01
-
21
点击次数:
11
来源:武汉纺织大学近日,省部共建纺织新材料与先进加工技术国家重点实验室徐卫林院士团队姚娜博士/材料学院王星博士在碳纤维上生长的氧析出催化剂的制备领域取得重要进展,通过开发一种掺杂不同 3d-orbital 原子 M(V、Ni、Zn、Mn)的 CoMoOx 系统,研究 氧空位(VO) 的形成和稳定及其在 OER 性能中的关键作用。原位和非原位测量以及理论计算表明,掺入 V 会调整 CoMo-d 和 ...
2025
-
01
-
21
点击次数:
10
来源:中国科学院物理研究所随着氦气资源的日益短缺以及低温制冷在空间应用、量子技术和前沿科学研究中的广泛应用,低温制冷技术的重要性不断增强。绝热去磁制冷技术(Adiabatic Demagnetization Refrigeration,ADR)基于材料的磁热效应(Magnetocaloric effect,MCE),提供了无需使用稀缺3He、4He达到亚开尔文温区的有效解决方案。其中,材料的磁熵变...
2025
-
01
-
17
点击次数:
162
来源:清华大学出版社无线声表面波(SAW)传感器在原位实时监测和准确评估高温部件的健康状况方面具有巨大潜力。作为 SAW 传感器核心单元的薄膜电极要求具备出色的高温导电性、稳定性和抗氧化性。我们采用先驱体转化陶瓷的方法,在 YCa4O(BO3)3/BN 衬底上制备了光滑致密的 SiHfBCN 陶瓷涂层。测试1200 °C热解的 SiHfBCN 陶瓷涂层1200℃高温电导率达到291.55...